Effect of Reynolds Number on Turbulent Drag Reduction by Superhydrophobic Surface Textures
نویسندگان
چکیده
منابع مشابه
Drag reduction on a patterned superhydrophobic surface.
We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited ...
متن کاملTurbulent Drag Reduction by Spanwise Wall Oscillations
The objective of this paper is to examine the effectiveness of wall oscillation as a control scheme of drag reduction. Two flow configurations are considered: constant flow rate and constant mean pressure gradient. The Navier-Stokes equations are solved using Fourier-Chebyshev spectral methods and the oscillation in sinusoidal form is enforced on the walls through boundary conditions for the sp...
متن کاملSustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces.
We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction becomes progressively larger as the Reynolds number increases up to a value of 22% at Re=8.0×10(4). We show that the mean skin friction coefficient C(f) in the presence of t...
متن کاملSurface-sampled simulations of turbulent flow at high Reynolds number
Funding information European Commission Horizon 2020, Grant/Award Number: 671571; Engineering and Physical Sciences Research Council (EPSRC), Grant/Award Number: EP/L000261/1 Summary A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space-filling quasi-direct numerical simulations (QDNS), which sample the respon...
متن کاملTurbulent Drag Reduction by Spanwise Wall Oscillations
The objective of this paper is to examine the effectiveness of wall oscillation as a control scheme of drag reduction. Two flow configurations are considered: constant flow rate and constant mean pressure gradient. The Navier-Stokes equations are solved using Fourier-Chebyshev spectral methods and the oscillation in sinusoidal form is enforced on the walls through boundary conditions for the sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Flow, Turbulence and Combustion
سال: 2015
ISSN: 1386-6184,1573-1987
DOI: 10.1007/s10494-015-9627-z